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ABSTRACT  
Although more than sixty years have elapsed since Shannon's seminal information entropy 
paper the literature reveals that there are divergent opinions of what it actually measures. 
From its similarity to Boltzmann entropy in statistical mechanics, the most common view is 
that it measures information disorder and uncertainty. Based on an inductive derivation of the 
expression we propose a new interpretation relating to the use of symbols to uniquely identify 
probabilistic messages. Applying this new meaning to Shannon's English language 
experiment we extract a new interpretation of those results. Moreover, the new understanding 
of Shannon entropy also has the potential to improve the effectiveness of intelligence analysis 
applications. 
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A New Interpretation  of the Shannon Information 
Entropy Measure   

 
 

Executive Summary  
 
 
Shannon stated in his seminal paper that any monotonic function of the number of 
messages generated by a source can be regarded as a measure of the information being 
generated. One consequence of using any function of the number of messages and their 
probabilities is that the meaning of the measure becomes obscure, and consequently is 
open to many different interpretations as evidenced by the literature on the topic.  This 
report aims at clarifying what Shannon entropy actually measures. From first 
principles we show that Shannon entropy simply represents the average number of 
quantised symbols required to encode or identify an incoming probabilistic message. 
This follows directly from the definition of the logarithmic function. We also show that 
the logarithmic base represents the degree of symbol quantisation. Finally we apply the 
new interpretation to Shannon’s English language experiment which yields a new 
meaning to those results. The primary motivation behind this re-examination of 
Shannon entropy is to gain a more precise interpretation so that the measure can be 
more effectively applied when analysing Defence information, such as for word sense 
disambiguation in automated text analysis.  
 
Reference: 
Shannon, C. (1948) A mathematical theory of communication, The Bell System 
Technical Journal, 27(3), pp. 379-423. 
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1. Introduction 

The Shannon entropy measure [1,2] has been widely studied in the information theory 
literature. In the popular literature [3] it is frequently considered to be a measure of order 
and uncertainty. Many authors have proven that it is the only measure that satisfies a 
number of fundamental desiderata or axioms for an uncertainty measure. One view is that 
Shannon entropy represents the maximum amount by which the state space or message 
length can be compressed. Another view is that it represents the information gain by an 
event from a probabilistic space, sometimes also called the “expected surprise”. One 
example of this view [4] states:  

…the entropy of a system with prescribed mean energy can be interpreted as the maximum amount 
of missing information.  

One important justification of the Shannon entropy expression, which is often quoted in 
the literature, is that it is the only measure to satisfy the axioms that Shannon defined. But 
as we will see some authors also question the validity and completeness of those axioms. 
Perhaps some of the confusion can be attributed to the original circuitous and difficult to 
follow derivation by Shannon. So although the fundamental expression has been extended 
many ways [5][6] into so-called generalised entropy measures by applying conventional 
probability laws, as well as it being used in practical compression algorithms, we believe 
there still remains considerable confusion about its true meaning. Furthermore, several 
authors [4][7][8][9][10] have identified some implicit limitations of Shannon entropy which 
should be acknowledged. It is also noteworthy that there is still some confusion about the 
meaning of the older Boltzmann statistical mechanics type of entropy of physical systems, 
as indicated by the following comments [10], although “disorder” is the most common 
interpretation for that type of entropy: 

The qualitative character of entropy has been discussed widely… The metaphoric images invoked for 
entropy include “disorder”, “randomness”, “smoothness”, “dispersion”, and “homogeneity”. In a 
posthumous fragment, Gibbs mentioned “entropy as mixed-up-ness.” Images such as these can be 
useful and important, but if taken too literally they can confuse as well as enlighten, and when 
misused they can result in simple error. 

To commence this analysis, the conclusions of a recent author are presented to set the 
context for this Shannon entropy analysis. Next, as a first step towards clarification, 
Hartley’s original derivation of his information measure is presented since it is a special 
case of the Shannon expression. The meaning of Shannon entropy is then exposed by 
applying inductive logic to derive the expression. Following that, some computational 
examples are also presented to indicate the key behavioural aspects of Shannon entropy, 
some of which dispel some common beliefs. Finally, some implications of the suggested 
meaning will be presented.  
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2. Some Recent Comments on Shannon Entropy 

Recently, in “The Mathematical Theory of Information”, Kahre [11] proposes a new 
approach to the measurement of information and makes certain assertions about Shannon 
entropy (H): 
 The belief in entropy as the only adequate measure of information is deeply rooted. This can be 
seen in the information theory literature, where the uniqueness of H is proved in different ways 
using the same basic method. A set of axioms is proposed and declared to be necessary for an 
information measure, and then the “uniqueness theorem” is proved, i.e. that H is the only function 
satisfying the proposed axioms…These properties are rather strongly tailored to the Shannon 
entropy (Aczel and Daroczy 1975). Hence the proofs have a flavour of circularity. The goal seems to 
be to find the weakest possible set of axioms (Gottinger, 1975 p.7-8) sufficient to prove the 
uniqueness of H.       [11, p.107] 
 
For a function H to be a measure of the information content of a message set A, Shannon 
suggested [1] it to be “reasonable” for it to have the following properties: 
 
1.  It should be continuous in the P(ai), where P is a probability. 
      i.e. small variations in P cause only small  variations in the measure. 
 
2.  It increases monotonically with N if P(ai) = 1/N  
     i.e. with more events there is more information when an event occurs. 
 
3.  It satisfies the decomposition rule for joint entropy of two discrete random variables:` 
 i.e.   H(A,B)  =   H(A)  +  H(B|A) 
     =   H(B)  +  H(A|B) 
     =   H(A)  +  H(B)  if A and B are independent random variables. 
      i.e. for a sequence of independent events the total information should be the sum of  
the partial entropy measures. 
 
Some other comments by Kahre follow. 
 Even if we accepted the axioms, the uniqueness of H(A×B) as an information measure does not 
follow. The axioms only imply that H(A) is a unique measure of information content, but H(A) as 
information content is shared by other measures of information (A×B). e.g by the Bernoulii 
information measure.   
And, 
 Shannon H is the largest amount of bits transmitted with 100% reliability. Hence the Shannon 
information measure is the number of sure bits.         [11, p. 90] 
And, 
 The axioms 1-3 cannot however, be accepted as fundamental properties of an information 
measure, because many important information measures are in conflict with the axioms. For 
instance, members of the utility family such as Gambler’s gain, or reliability, violate the 
decomposition rule.        [11, p.108] 
And, 
 Thus Shannon H is not a measure of information, but rather an upper limit HB (Boltzmann 
entropy) of the true information HG (Gibbs Total Entropy)    [11, p.220] 
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The previous comments by Kahre indicate that after 60 years there are still some members 
of the information theory community not altogether satisfied with the prevailing 
understandings of Shannon entropy. Needless to say, this does not necessarily diminish 
the importance of Shannon entropy within information theory. 
 

3. Measures of Information or Uncertainty  

Some distinctions between measures of uncertainty, measures of information, and 
functions of uncertainty will now be described. 
 
3.1 Measures of uncertainty 

A measure, by definition, quantifies a property which by its own definition is capable of 
being measured. A measure of uncertainty then requires a measurable definition of 
uncertainty. However, uncertainty itself is an ambiguous concept because there are many 
types of uncertainty, as evinced by several proposed taxonomies of uncertainty [12][13]. 
Consequently, the type of uncertainty must be clearly identified if a measure of 
uncertainty is to be developed. For example, an estimate of the degree of approximation, 
ambiguity, or variance may be used to define a measure interval for a variable such as: 
Length ±5%, Velocity ± 10%, or Mean value  ± 2 standard deviations for a statistical 
sample.  
 
Until the first half of the twentieth century event likelihood as measured by probability 
was the primary type of uncertainty being quantified This chance type of probability, also 
called aleatory probability, was usually estimated from evidential data. Another 
probability variant termed “subjective probability” is often used to estimate a single 
event’s likelihood in the absence of data, e.g. an estimate of the probability that you will 
have a car accident tomorrow. This type is called “subjective” because the basis for the 
estimate is some sort of knowledge from experience, or a feeling residing inside an 
individual, and when such knowledge is minimal the estimate tends to a guess. In recent 
decades, there has also been an increasing focus on non-probabilistic uncertainty and 
several different measures have been proposed [5][14][15][16,17][18]. Lotfi Zadeh, the 
founder of fuzzy set theory, has also  proposed [18] a Generalized Theory of Uncertainty 
stating:  
…Uncertainty is an attribute of information. A fundamental premise of the Generalized Theory of 
Uncertainty is that information whatever its form, may be represented as what is called a 
generalized constraint. In the Generalized Theory of Uncertainty a probabilistic constraint is 
viewed as a special, albeit important, instance of a generalized constraint. 
 
Nevertheless, there are still some gaps and shortfalls in non-probabilistic uncertainty 
modelling, especially with measures of total uncertainty in bodies of information where 
hybrid forms of uncertainty exist. These shortfalls concern how to identify different types 
of uncertainty, how to represent them for quantification, and finally how to derive a 
composite uncertainty estimate. In general, measures of uncertainty can be considered as 
macroscopic indicators of the degree of clarity and conciseness of data, i.e. as levels of 
vagueness and ambiguity. 
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3.2 Measures of information 

Information is also a nebulous concept relating to both the meaning and content of a 
message, as well as to the number or amount of messages. And since interpreting the 
content of a message invokes semantic complications, the normal focus of measures of 
information is on the amount of information, which is often thought of as the complement 
of the degree of uncertainty. But while this general relationship may exist, it is not an exact 
complement for quantitative measures. The reason for that is that they both measure 
different concepts as will be subsequently explained.  And similar to Zadeh’s Generalized 
Theory of Uncertainty, Klir has also proposed a Generalized Information Theory [19] by 
which many different kinds of information can be represented using formalisms that 
address the different kinds of information. In general, measures of information can be 
considered as indicators of the degree of definition or organisation of event states and the 
complexity of data set elements. In the communications theory context addressed by 
Shannon, this then relates to the degree of difficulty in uniquely identifying an incoming 
message from the range of possible messages and superimposed noise. 
 
3.3 Functions of uncertainty or information 

In contrast to measures of uncertainty or information, which are directly related to the 
amount and types of input information, functions calculate values from expressions in 
which the uncertainty information about a variable is the input. Thus, a measure 
calculated by a function is an indirectly derived value based on some uncertainty 
representation, e.g. probability. Then the meaning of the dependent measure so computed 
can only be interpreted from the reason for the application of the particular function. So if 
sin(x) is used as an uncertainty measure, some relationship between the information 
characteristic x and the sin function is implied. Similarly, using H = logb (x) necessarily 
implies bH = x. Shannon stated [1] on the first page of his seminal 1948 paper that:  
any monotonic function of the number of messages can be “regarded” as a measure of information, 
in lieu of the actual number of messages.  
 
However, the difficulty with using any function is that the meaning of the measure 
becomes unclear, since it diverges from the number of messages which is the actual 
amount of information. Thus, a function generates a covariate to the quantity of 
uncertainty or information. 
 

4. A Re-examination of Shannon Entropy 

The Shannon entropy expression relates to the process of mapping messages from a source 
into coded symbol combinations to enable the identification of a message by a receiver. An 
important question is how to minimise the loss (as inability to identify a message) when 
using symbol combinations where only the probability of a range of possible messages is 
known. Using traditional parametric statistics this could be addressed by setting a 
confidence level and deriving limits based on the distribution mean and a number of 
standard deviations. However, the Shannon entropy expression reflects a different 
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approach. Figure 1 illustrates the process of encoding messages from a probabilistic source 
using a fixed number N of quantised symbols S to communicate M messages to a receiver. 
Information loss can occur when there are an insufficient number of quantised symbol 
combinations, or codes, to identify an incoming message from the large number M 
emanating from the source. Since the degree of symbol quantisation determines the 
number N of symbols in a string of fixed length to encode the possible number of 
messages M, the aim is to select a number N such that the number of possible messages 
that cannot be identified is a minimum. For zero information loss, the number of quantised 
symbol combinations must be at least equal to the number of probable messages. 
 

Source Receiver

m1

m2

m3
.
.
.

mM

s1 s2 s3...sN

s1 s2 s3...sN

s1 s2 s3...sN
.
.
.

s1 s2 s3...sN

M Messages from a
probabilistic state space.

Combinations of fixed length N
of quantised symbols s

 
 
 
Figure 1:    Communication of messages using symbols   
 
 
4.1 Hartley Information Derivation 

We will now examine the derivation of a quantitative measure of “information” by 
Hartley published in his seminal paper [20] in 1928. This early measure is revisited 
because it is a special case of Shannon entropy, when all messages are completely random 
with equal probabilities of occurrence. 
 
Hartley’s Terminology: 
 
S   =   Number of code symbols available as degree of quantisation (bits = 2, digits = 10) 
n   =   Number of symbols in sequence 
H  =    amount of information associated with n selections ( “H” presumably for Hartley) 
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Itemised Steps in Hartley’s Derivation 
 
1)  Fundamentally, an increase in n increases information content (H) so: 

H  ∝ n   or   H = K n  (i) 
where K is a constant  which depends on S symbols available at each selection.  
 

2)  Take two systems with different quantised symbols S1 and S2, and constants K1 and K2 
 
3)  Choose n1 and n2 for the two systems to yield an equal number of possible sequences 
(i.e. messages), then : 

                  S1n1  =  S2n2     (ii) 
and    H1   =  H2      (same number of sequences) 
or    K1 n1  = K2  n2  (iii) 
 

4)  Take Logs of (ii): 
       log S1n1       =   log S2n2   
    n1 log S1  =  n2log S2  (iv) 
 
5)  Substitute (iv) into (iii) for n1: 
 

                                                                  (v) 
 

6)  (v) only holds if   Ki  = K0 log Si ,   (vi)  
                   where K0 is the same for all systems  
 
7)  Substitute (vi) into (i), 

H  =  (K0 log Si) n  = K0 n log Si  =  K0 log Sin                                             (vii) 
 

8)  Since K0 is arbitrary, we may omit it if we make the logarithmic base arbitrary. 
        The  particular base selected fixes the size of the unit of information. 
 
9)    Then, H = log Sin  = log N,             (viii) 
                   where  N  =  Sin  =  Number of symbol sequences  
 
 
The amount of information encoded in n selections of S quantised symbols is equal to Sn. 
So the Hartley measure of information is actually a log function of the amount of 
information, even though Hartley called it the “amount of information”. The question then 
is what does this log function H really represent? This will be explored in the next section. 
 

2log 2
1 2 2

log 1

1 2
log 1 log 2

n S
K K n

S
K K

S S

=

=

 
 
 
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4.2 An inductive derivation of Shannon entropy 

Shannon’s entropy expression will now be derived, starting from a basic algebraic 
equation that relates the number of bits {0,1} required to identify a range of possible 
messages from a source which are completely random. Consider Figure 2 which illustrates 
the combinations of three bits available to identify or encode eight equally likely messages, 
events, states, or values (m1-m8). Figure 2 only depicts the combinations of symbols 
possible and should not be interpreted as a probability tree. 
 

0 1

1

1 11 1

1

0

0 0

0 00

(000) (001) (101)(100)(011)(010) (111)(110)

1 bit

2 bits

3 bits

m1 m6m5m4m3m2 m7 m8

Symbolic
Identifiers

Probabilistic messages, states,
or events from Source  

 
Figure 2:   Combinations of three binary symbols 
 
 
From Figure 2 we can define the equation:            (1) 
 
 
The fraction on the left side of equation (1) represents one of two states selected at each 
binary symbol, and the right side represents the identification of one message arriving 
from the possible range of messages. 
 
Then with binary symbols {0,1} the following general expression defines the number of 
bits N required to identify a particular message, event, or state, from the number of  
messages A:  

                                                                                                     (2)  

 
 
Then to represent eight messages using N decimal digits {0-9}: 

1 1
2

N

A
  = 
 

31 1
2 8

  = 
 
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                                                                             (3) 

Note that N need not be an integer and one decimal digit can identify 10 messages. 
 

Generalising (3):   and                                 (4) 
 
Expression (4) is the seminal Hartley Information Measure with log base 10. 
Also, for the binary symbol space in Figure 2 and completely random messages: 
 

for each message or state           

Then  ,                ∴  3    =  N                    (5) 

Now (5), the number of bits N to identify or represent a message with a uniform 
probability of occurrence, can be generalised for messages with non-uniform probabilities 
because the expression need not be constrained to uniform probabilities. The reason for 
that is that N is a non-probabilistic variable itself, and only has a representational or 
encoding relationship to an event’s probability of occurrence, as well as to whatever 
determines that probability.   
 
Then, the number of bits Ni to represent a message i with probability Pi is, 
                                                                                        (6) 
  which has been termed the Wiener entropy.  
 
Then, by applying the standard statistical expectation expression the expected number of 
bits to represent a message arriving from the range of probable messages is: 

        

( )

( )
1

2
1

2
1

( )

log

log , .

A

i
A

i i

A

i i

Prob of message i Number of Bits required for message i

P P

where A is the total  number of  probable messagesP P

=

=

= −

= −

∑

∑

∑            (7) 

 
 The above is an inductive derivation of the discrete Shannon entropy expression, 
generalising from a simple example with uniform probabilities to a non-uniform 
probability event space with an expectation estimate for the number of bits to represent a 
message arriving from the source of probable messages. 

 

10

1 1
10 8
10 8

log 8
0.9

N

N

and N
decimal digits

  = 
 

=
=
=

10N A= 10logN A=

31 1 ,
2 8 u uP where P is the uniform probability  = = 

 

uP
123 = 2log uP= −

2logi iN P= −
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Thus we can conclude: 
1) Shannon entropy (H) is only relevant to probabilistic types of uncertainty as 

present in a probabilistic event space. 
2) H represents the expected number of bits to identify a message (state, event, or 

value) from a probabilistic space of messages. 
3) Because it is an average, some messages will require more bits than the entropy 

estimate. 
4) H is not the minimum number of bits required to reliably transmit a probabilistic 

message, i.e. not the number of “sure” bits of Kahre. 
5) H is not a quantification of uncertainty but a function of uncertainty. 
6) H is an uncertainty covariate as a function dependent on the probability 

distribution of multiple possible messages (or events, states, or values). 
 
4.3 Some illustrative examples 

The following examples demonstrate how H increases with an increase in the number of 
messages, and/or some message probabilities are around the maximum uncertainty of  
p = 0.5. Figure 3 shows H as a function of single probability values. It should be noted that 
this distribution is skewed with the maximum not at p = 0.5, as it is only for two mutually 
exclusive binary messages with probabilities p and q, where q =1-p (as in Shannon’s 
original paper). 

 
Figure 3:   Shannon Entropy as a Function of a Single Probability 
 
5 Messages 
1)    With probabilities {4(0.05), 1(0.8)} 
 H   =   - [ 4(0.05) log 2 (0.05) + 0.8 log 2 (0.8) ]  

=   - [0.2 log 2 (0.05) + 0.8 log 2 (0.8)  ]   
=   1.121  bits 

2)    With probabilities {2(0.05), 0.1, 0.3, 0.5 } 
 H    =  - [2(0.05) log 2 (0.05) + 0.1 log 2 (0.1)  + 0.3 log 2 (0.3) + 0.5 log 2 (0.5)] 
  =   1.784  bits 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability

H



UNCLASSIFIED 
 DSTO-TN-1395 

UNCLASSIFIED 
 10 

3)    With uniform probabilities   { 5(1/5) }  
 H  =   - 5(1/5) log 2 (1/5)  =  log 2 (0.2)  =  1.623 bits 
 
8 Messages 
4)    With uniform probabilities  { 8(1/8) } 
 H        =   - 8(1/8) log 2 (1/8)   
  =    3.000   bits 
 
52 Messages 
5)   With uniform probabilities  { 52(1/52) } 
 H` =   - 52(1/52) log 2 (1/52)   
  =    5.700  bits 
6)    With probabilities { 30(0.01), 20(0.02), 2(0.15) } 
 H =   -  [30(0.01) log 2 (0.01)  + 20(0.02) log 2 (0.02)  + 2(0.15)log 2 (0.15) ] 
  =     5.073   bits 
7)  With probabilities { 50(0.01), 1 (0.4), 1 (0.1) } 
 H =   -  [50(0.01) log 2 (0.01)  + (0.4) log 2 (0.4)  + (0.1) log 2 (0.1) ] 
  =     8.943   bits 
 
From these illustrative calculations we can conclude: 
• With a uniform distribution H increases from 5 to 8 to 52 messages.  
• For 5 messages: number 2) with two probabilities in the high uncertainty range 

(around 0.5) has greater H than example 1) with no probabilities in the high 
uncertainty range, and is also greater than 3) with uniform probabilities of 0.2. 

• For 52 messages:  number 7) with a single p=0.4 has greater H than examples 5) or 6) 
with no probabilities in the high uncertainty range.  

• Uniform probabilities do not necessarily yield maximum H for multiple messages (as 
in the 52 message examples) 
 

 

5. Some applications 

5.1 A re-interpretation of Shannon’s English alphabet experiment 

The following re-examination of Shannon’s English alphabet experiment will be used to 
demonstrate a clear and explicit interpretation of the experimental results compared with 
the standard existing interpretation. The experiment is generally considered to determine 
the entropy of an English letter, which is said to be the amount of information in bits that 
we obtain on the average (i.e. the information gain) when we learn or read a letter of 
English in a sentence. Shannon seconded his wife in the experiment to guess the hidden 
next letter, or alternatively a space, after viewing an unfolding string of characters, i.e. 
only using knowledge of letters that came before. The number of guesses it took until the 
correct letter or space was identified was then recorded. So over a number of pages of text 
from a single book a probability distribution across the range of possible guesses from 1 to 
27 could be derived, in relation to the total number of guesses. Using the entropy 
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expression for this discrete probability distribution of number of guesses until correct one, 
the H value could then be computed for the English alphabet. 
Across a number of experiments Shannon found that H varied between 0.8 and 1.3. 
Subsequent tests, some on a large scale such as by Moradi et al. [21], have also determined 
H to be between 1.0 and 1.6. Thus, Shannon interpreted H to be the information content of 
letters in the English alphabet. If such a probability distribution was to be uniform across 
the number of possible guesses for each letter or space we would have:  H = log2 27 = 4.755 
bits. 
 
However, we can now apply the previous understanding of Shannon entropy as the 
number of quantised symbols required to identify an incoming probabilistic message. In 
Shannon’s experiment the probabilistic message is the number of guesses to correct letter 
identification. Then by the above interpretation of entropy, H=2 will enable 2 binary 
symbols to identify 4 different numbers of guesses. It is important to note that from H 
values we cannot derive the mean number of guesses for the whole probability 
distribution which of course can be determined from the distribution itself. And applying 
our new interpretation to the H range 1.0 to 1.6 derived from the duplication of the 
experiment by Moradi et al. described in [21]: 
For H = 1 bit, up to 2 numbers of guesses can be identified (i.e. 1 or 2). 
For H = 1.6 bits, up to 3.03 numbers of guesses can be identified (i.e. 1, 2, or 3). 
 
Thus, the H values in those experiments showed that the average range of guesses required 
to pick the correct letter or space is between 1 and 3, over the numerical range of all correct 
guesses in the experiment (e.g. sometimes 5 or 9 or even 12 guesses for rare letter 
combinations). This interpretation of H would seem to be more valid than stating that H 
depicts the amount of information that an English letter provides. The experiments by 
Moradi et al. also showed that H is primarily dependent on the skill of the human subject 
and complexity of the text, rather than some intrinsic property of English alphabet.  It is 
also important to note that Shannon’s derivation of his channel capacity expression [22] 
does not rely on entropy. The mathematical derivation of the channel capacity formula in 
that paper was based on the results of Hartley and Nyquist, in addition to some basic 
waveform mathematics. Thus Shannon entropy simply estimates the number of quantised 
symbols to represent the average range of guesses, but not the average number of guesses 
itself. And from this concise meaning it can be appreciated why H does not quantify the 
amount of uncertainty or information in a probability distribution, but is rather a 
dependent function of it as is the mean of any probability distribution. 
 
5.2 Valid selection of the log base 

In the inductive derivation of Shannon entropy in section 4.2, we showed that the 
logarithmic base represents the degree of coding symbol quantisation. And because 
conversion between log bases can be made using a multiplicative constant, ratios of 
measures will be unaffected, but differences or sums of measures with an arbitrary log 
base will not be equivalent to measures that use a base matching the degree of coding 
symbol quantisation. Thus, sums of differences of entropy values will differ in magnitude 
from true entropy values with a log base that matches the symbol quantisation, by the 
conversion constant between the true base and value being used. Since the base 
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determines the units of the measure scale (bits, digits etc.) it would then seem prudent to 
always use a log base in entropy calculations which matches the degree of coding symbol 
quantisation, which is 2 for binary symbols. 
 
These conclusions directly impact on methods for computing measures of total uncertainty 
when hybrid forms of uncertainty exist. As previously discussed, many measures that 
have been proposed to assess the total uncertainty in information have floundered when 
they tried to combine measures that intrinsically have different units. As yet there seems to 
be no consensus on what is a robust and valid approach to derive measures of total 
uncertainty. Some approaches, such as by DeLuca and Termini [23], could also be 
criticised because they insert non-probabilistic uncertainty measures into the Shannon 
entropy expression. The problem with doing that is that the entropy expression has no 
meaning with non-probabilistic uncertainty measures, such as fuzzy set membership 
grades in [23], because it is a probabilistic expectation based on relative frequencies. There 
can be little doubt that other kinds of uncertainty besides probabilistic likelihoods exist in 
many fields where uncertainty measures are applied for reasoning, and that practical 
methods would be useful for modelling hybrid uncertainty. This author has also proposed 
[24] one practical approach to modelling hybrid uncertainty which allows hybrid 
uncertainties to be systematically propagated through mathematical equations. 
 
 

6. Summary 

Shannon stated in his seminal paper that any monotonic function of the number of 
messages generated by a source can be regarded as a measure of the information being 
generated. One consequence of using any function of the number of messages and their 
probabilities is that the meaning of the measure becomes obscure, and consequently is 
open to many different interpretations. For example, Shannon also proposed the term 
“measure of choice” as an alternative to the measure of information for his entropy 
expression, i.e. more messages means more to select from or identify. Thus the terms 
Shannon suggested for his expression are: measure of information, measure of uncertainty, 
and measure of choice.  This report has shown that Shannon entropy simply represents the 
expected number of quantised (e.g. binary) symbols required to discriminate or identify an 
incoming probabilistic message. This follows directly from the definition of the 
logarithmic function. Being an expectation based on probabilities, there will be some rare 
messages with low probabilities that will require more bits to identify them than the 
number computed by the entropy expression. Applying this meaning to Shannon’s 
English language experiment we also derived a clear interpretation of those results. 
 
In recent years there has been increasing research on measures for higher-order and 
hybrid uncertainty forms which occur across many application domains, e.g. [25]. As a 
preliminary step towards developing higher-order and hybrid uncertainty measures it 
would be beneficial, if not essential, to have a clear understanding of any special 
probabilistic uncertainty measures that currently exist such as Shannon entropy. Thus, the 
primary motivation behind this re-examination of Shannon entropy has been to gain a 
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more precise interpretation so that the measure is more effectively applied, especially in 
Defence applications such as for word sense disambiguation in automated text analysis. 
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